Avalanche Risk Property Dataset (ARPD)

User Manual

Günter Schmudlach

19. October 2020

(V3.0.12)

Abstract

The document introduces a generic dataset, that powers avalanche risk calculations. The dataset consists of two <u>OGR compliant point vector datasets</u>. The first dataset contains information about avalanche accident points (failure data). The second dataset contains information about travel points of the back-country skier community (success data). Each point of both datasets provides a geographic location and a number of properties. Special emphasis is given to the description of the point properties. Both datasets refer to Switzerland. The purpose of the data set is to derive knowledge about avalanche risk.

1	Introduction	3
2	Property Description Template	4
	Data Bias	
	DataTerrain (Avalanche probability)	
-	4.1 Slope Angle (SA)	5 5
	4.1 Slope Angle (SA)	3 6
	4.3 Terrain Indicator (TI)	
	4.4 High Potential (HP, HP70, HP150)	י א
	4.5 Sum Potential (SP)	
	4.6 Maximal Slope Angle (MSA40, MSA70, MSA100, MSA150)	
	4.7 Minimal and Maximal Slope Aspect (MIN_ASPECT, MAX_ASPECT)	
	4.8 Elevation (ELE)	
	4.9 Plan Curvature (PLANC)	
	4.10 Terrain Folds (FOLD)	14
	4.11 Vegetation Height (VH)	
	4.12 Forest Density (FD)	16
	4.13 Terrain Ruggedness (TR)	17
	4.14 Avalanche Terrain Hazard (ATH)	
	4.15 Distance to Ridge (DIST_RIDGE)	
_	4.16 Treeline (TL)	
5	DataTerrain (Avalanche consequences)	
	5.1 Maximal normal acceleration (FD_MAXNA).	
	5.2 Sum of normal accelerations (FD_SUMNA)	
	5.3 Maximal Velocity (FD_MAXV)5.4 Sum of Velocities (FD_SUMV)	
e		
ю	Avalanche Forecast.	
	6.1 Raw Danger Level (RDL)6.2 Interpolated Danger Indicator (IDI)	
	6.3 Critical Aspects (CA)	
	6.4 Critical Elevation (CE)	
	6.5 Warning Region Code (WRC)	
	6.6 Avalanche Problems (AP)	
	6.7 Continous Raw Danger (CRD)	
	6.8 Distance to next lower danger level (DIST_LO)	
	6.9 Distance to next higher danger level (DIST_HI)	
7	Avalanche Forecast and Terrain	.33
	7.1 Danger Indicator (DI)	33
	7.2 Aspect Overlapping Fraction (AOF)	
	7.3 Delta Critical Elevation (DCE)	35
_	7.4 Core Zone (CZ)	
8	Spatio-temporal information	
		38
	8.2 X- Coordinate (X)	
	8.3 Y- Coordinate (Y).	
~	8.4 Hash (HASH)	
9	Human-related Information	
	9.1 Traffic Density (TD5000)	
	9.2 Traffic Density (TD100)	
	9.3 Distance to next SAC skitour (DIST_SAC)	
	9.4 Distance to next piste (DIST_PISTE)9.5 Identifier of Route (ID)	
	9.6 Elevation Gain (EG)	
10) Recommendations.	
10	10.1 Multivariate Regression Analysis	
	10.2 R-Statistics.	

Content

1 Introduction

Where and when do avalanche accidents in a backcountry skier context occur? In a classical approach scientists search for specific patterns within the property data of avalanche accidents. However accidents in a backcountry skier context only occur, if there is backcountry skier traffic. Therefore its mandatory to relate to knowledge about accidents to the knowledge about the underlying backcountry skier traffic.

The Avalanche Risk Property Dataset (ARPD) consists of two datasets:

- 1. The first dataset describes 1037 avalanche accidents of Switzerland. In all these accidents humans were involved All accidents occurred in a backcountry skier context. Accidents that occurred in a freerider context were discarded. In 95 % of the cases a winter sportsman triggered the avalanche. The data cover all severe accidents from the winter 2001/2002 to the winter 2018/2019. Approximately 17 % of the accidents had fatal consequences. Each accident is described by 7 points. The first point refers to the highest point of the release area. The remaining points describe a downhill trajectory starting at the first point. Points are located in a 10 m distance. The downhill trajectory describes a line covering the most likely **release area** of the avalanche.
- 2. The second dataset describe approximatively 5 million transition points of backcountry skiers in Switzerland. The data come from GPS track recordings of effectively undertaken skitours. The GPS tracks were uploaded from contributors to the platforms <u>skitourenguru.ch</u>, <u>gipfelbuch.ch</u> and <u>camp2camp.org</u>. A complex filtering process makes sure the dataset only contains information about backcountry skitours. Points were resampled with a constant distance of 10 m along the routes.

The first dataset provides information about **failure points**. Failure point means an accident occurred at this point. The second dataset provides information about **success points**. Success point means that the point could be passed without triggering an avalanche. For each point of both datasets a number of properties are provided. By comparing the properties of failure points to the properties of success points its possible to deduce knowledge about the **relative avalanche risk**.

ISO norms define risk as the effect of uncertainties to objectives. We define two objectives:

- 1. To prevent backcountry skiers to trigger an avalanche resp. to be caught by an avalanche.
- 2. To keep a reasonable space of freedom of movement to backcountry skiers.

The knowledge can be used to model tools that direct the backcountry skier community in time and space to less riskier domains.

2 Property Description Template

The following chapters will present all properties of accident and transition points. An introducing table with the following elements gives an overview to the property:

Name	Abbreviation	Name						
Description	Description of th	Description of the property.						
Comment	A comment abo	A comment about the property.						
Values	Data type		Value range		No data value			
Reference	Reference to mo	ore informatio	n about the property.					
Redundancy	Information abo	ut redundanc	y to other properties.					
Usage	0-3 Stars	Recommendations for the usage of the property.						
Copyrights	Copyrights of the raw data							

The section **Usage** indicates a number of stars. The number of stars depend on two criteria:

- 1. The predictive value of the property: A property is a good **explanatory variable** for the risk, if failure data and success data show a clear trend and if failure data and success data are fundamentally different.
- 2. Availability: Availability of the data throughout the Alps. The availability of data includes as well copyrights limitations.

After the table a longer description about the property is given if required. Its followed by a histogram of the property: **Raw data** are displayed with **dashed lines**, **smoothed data** are displayed with a **solid line**. The following colors are used:

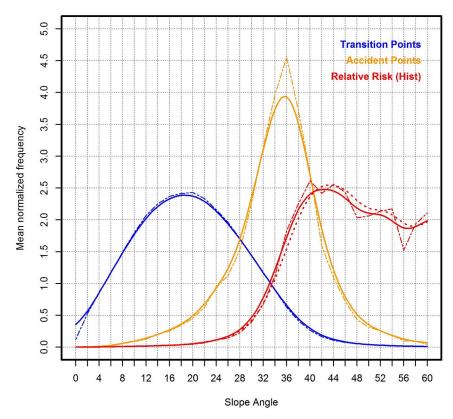
- 1. **Blue**: A histogram of the properties at the terrain usage points (success data). The **dashed line** shows raw data, the **solid line** shows smoothed data.
- 2. **Yellow**: A histogram of the properties at the accident points (failure data). The **dashed line** shows raw data, the **solid line** shows smoothed data.
- 3. **Red**: A histogram of the quotient from the properties at the accident points to the properties at the transition points. The **dashed line** shows raw data, the **solid line** shows smoothed data. The **dotted line** comes from the division of the **smoothed accident line** and **smoothed terrain usage line**.

The vertical axis shows the **mean normalized frequency**. The mean normalized frequencies is calculated by dividing the **initial frequency** by the **mean frequency**.

Smoothing is done with <u>Kernel Density Estimation (KDE</u>). KDE needs the definition of a bandwidth. The bandwidth is normally 10% of the range covered by the horizontal axis. For AOF, DI, IDI and RDL its 50%.

The histogram provides a first insight to the distribution of the property values. It will be followed by a preliminary interpretation.

3 Data Bias

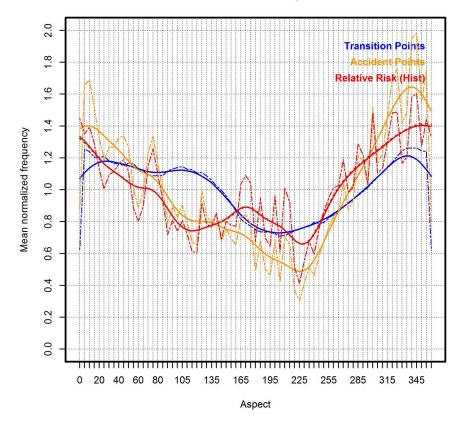

Knowledge about an eventual data bias is collected on Skitourenguru.

4 DataTerrain (Avalanche probability)

4.1 Slope Angle (SA)

Name	SA	Slope Angl	Slope Angle				
Description	The slope angle	The slope angle derived from a DEM with 10 m resolution.					
Comment							
Values	Decimal		090°		-9999		
Reference	gdaldem (slope)					
Redundancy	TI, MSA*, HP, S	SP					
Usage	***	Priority should be given to TI.					
Copyrights	© Swisstopo						

DISTRIBUTION: Slope Angle

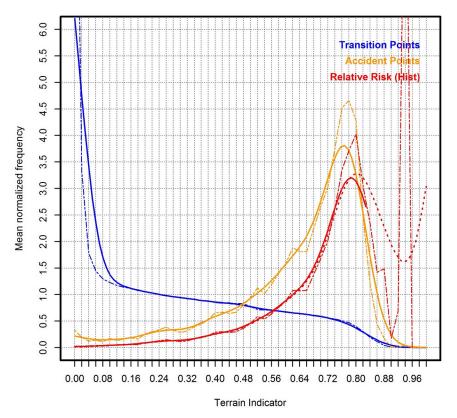

Interpretation

From former accident data analysis it was already known, that most accidents occur around 36-40°. If accident data is related to terrain usage data, the curve moves to the right (see red curve). The highest relative risk is reached at 44°. Above 44° the relative risk slowly decreases. Uncertainties become high above 50°.

4.2 Aspect (ASPECT)

Name	ASPECT	Aspect							
Description	Aspect at the po	Aspect at the point.							
Comment	The aspect deriv	The aspect derived from a DEM with 10 m resolution.							
Values	Decimal		0360°		-9999				
Reference	gdaldem (aspec	<u>t)</u>							
Redundancy									
Usage	**	Priority should be given to AOF.							
Copyrights	© Swisstopo	stopo							

DISTRIBUTION: Aspect


Interpretation

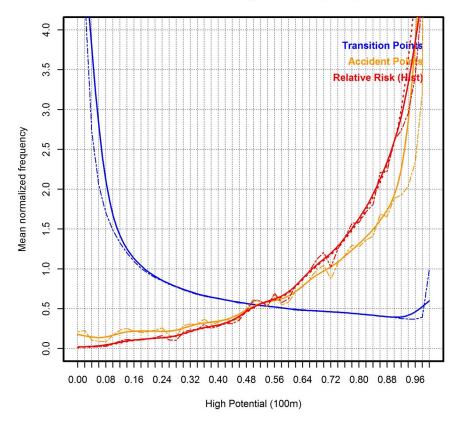
The lowest relative risks (0.7) can be found on SW-Slopes (225°). Highest relative risks (1.25) can be found on northern slopes That's 80% more then the minimal value. The difference is marked, but less then what was suggested in the past.

4.3 Terrain Indicator (TI)

Name	ТІ	Terrain Indicator				
Description	TI indicates how	suitable a te	rrain point is to trigger an aval	anche. MRSAR=100 m.		
Comment		TI is an immediate function of HP and SP. TI doesn't include directly the consequences of an avalanche (PBD, FD_*).				
Values	Decimal		01	-9999		
Reference	Method for an A	utomatized A	valanche Terrain Classification	<u>n</u>		
Redundancy	ATH, SA, MSA*,	HP, SP				
Usage	***	Important.				
Copyrights	© Skitourenguru					

DISTRIBUTION: Terrain Indicator

Interpretation


Failure data and success data follow a fundamentally different trend. The relative risk shows a tremendous rise in risk with rising TI. Above TI=0.8 the relative risk becomes uncertain.

4.4 High Potential (HP, HP70, HP150)

Name	НР	High Potential					
Description		HP gives a measure for the avalanche potential of the most dangerous spot within the slope the current point is member of.					
Comment	Relevant Slope /	 HP is an immediate precursor of TI. HP was calculated with different MRSAR (Maximal Relevant Slope Area Radius): HP: 100 m HP70: 70 m HP150: 150 m 					
Values	Decimal		01		-9999		
Reference	Method for an A	utomatized A	valanche Terrain (Classificatio	<u>n</u>		
Redundancy	SP, TI, SA, MSA	\ *					
Usage	**	Priority should be given to TI.					
Copyrights	© Skitourenguru						

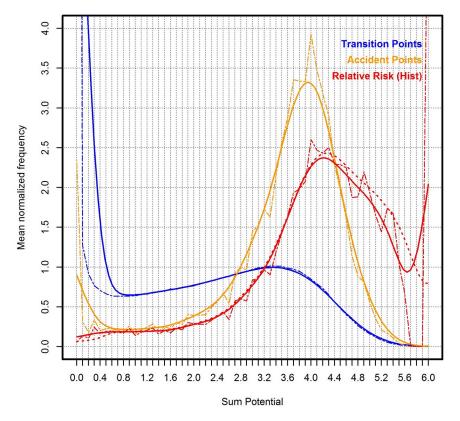
Each point is member of a slope called RSA (Relevant Slope Angle). All slope angles on the RSA are first converted to a potential. Therefore the knowledge of the risk distribution of SA is applied. HP is given then by applying the following formula:

HP = norm(mean(potentials) + 1.25 * sigma(potentials) where potential = risk(slopeAngle)

DISTRIBUTION: High Potential (100m)

Interpretation

The relative risk shows a tremendous rise in risk with rising HP.


4.5 Sum Potential (SP)

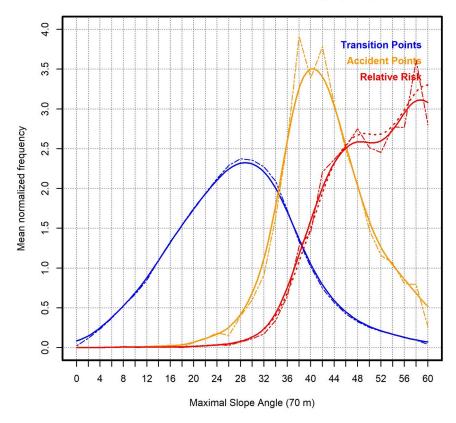
Name	SP	Sum Poten	tial				
Description		SP gives a measure for the avalanche potential of the whole slope the current point is member of. MRSAR=100 m.					
Comment	SP is an immedi	SP is an immediate precursor of TI.					
Values	Decimal		08	-9999			
Reference	Method for an Au	utomatized A	valanche Terrain Classificati	<u>on</u>			
Redundancy	HP, SA, MSA*, F	PBD					
Usage	**	Priority should be given to TI.					
Copyrights	© Skitourenguru						

Each point is member of a slope called RSA (Relevant Slope Angle). All slope angles on the RSA are first converted to a potential. Therefore the knowledge of the risk distribution of SA is applied. SP is given then by applying the following formula:

SP = log(sum(potentials)) where potential = f(slopeAngle)

SP becomes a measure for the **size of the slope** or more exactly the slope's avalanche potential. As SP represents the size of the slope, its correlated to PBD (Projected Burial Depth). The larger the slope the higher are potential burial depths.

DISTRIBUTION: Sum Potential


Interpretation

Failure data and success data follow a different trend. The relative risk shows a tremendous rise in risk with rising HP.

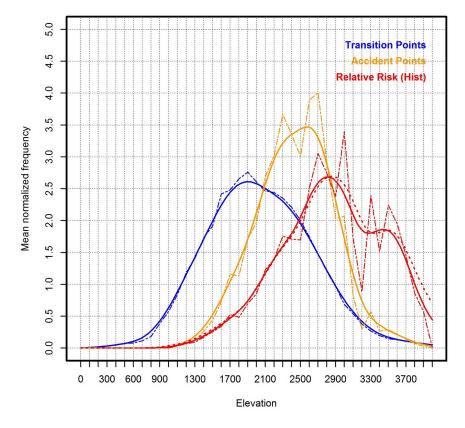
4.6 Maximal Slope Angle (MSA40, MSA70, MSA100, MSA150)

Name	MSA	Maximal Slope Angle						
Description		MSA indicates the slope angle at the most dangerous spot within the slope the current point is member of.						
Comment	MSA40: MSA100 MSA100 MSA100 MSA150 MSA150 The most dange dangerous raste	 MSA100: 70 m MSA100: 100 m MSA150: 150 m The most dangerous spot is defined by the average slope angle of the 15% most dangerous raster cells. To identify the most dangerous raster cell "ceiling" is applied. Example: If we have 28 Pixels, the Math.Ceiling(28*0.15) = 5 most dangerous pixels 						
Values	Decimal		090°	-9999				
Reference	Method for an A	utomatized A	Avalanche Terraii	in Classification				
Redundancy	SP, HP, TI, SA							
Usage	**	** Priority should be given to TI.						
Copyrights	© Skitourenguru							

DISTRIBUTION: Maximal Slope Angle (70 m)

Interpretation

The relative risk shows a tremendous rise in risk with rising MSA*.

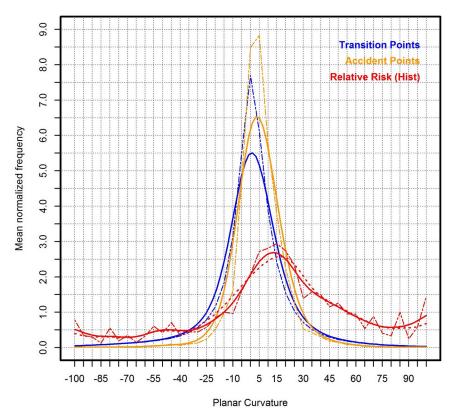

4.7 Minimal and Maximal Slope Aspect (MIN_ASPECT, MAX_ASPECT)

Name	MIN_ASPECT,	MAX_ASPECT	Minimal and Maximal	Slope Aspect			
Description			ontained in the slope assi es in clockwise direction	gned to the point. The and ends at MAX_ASPECT.			
Comment	Radius) of 100 r >25° are taken i Be careful when • For flat • These a	 The assigned slope was calculated with a MRSAR (Maximal Relevant Slope Area Radius) of 100 m. In order to calculate the aspect interval only pixels with slope angle >25° are taken into account. Be careful when processing the interval: For flat spots the values are set to NO_DATA These are circular values: 360°=0°, that means MIN_ASPECT can be higher then MAX_ASPECT. 					
Values	Decimal	036	60°	-9999			
Reference	Method for an A	utomatized Avalar	che Terrain Classificatio	<u>n</u>			
Redundancy	ASPECT						
Usage	**	**					
Copyrights	© Skitourenguru	l					

4.8 Elevation (ELE)

Name	ELE	Elevation						
Description	Elevation accor	Elevation according to the DEM with 10 m resolution.						
Comment								
Values	Decimal		05000 m	-9999				
Reference	swissALTI3D-1	<u>0m</u>						
Redundancy	None							
Usage	***	An important property.						
Copyrights	© Swisstopo							

DISTRIBUTION: Elevation


Interpretation

Failure data and success data follow a fundamentally different trend. The relative risk shows a tremendous rise in risk until 2700 m. From 2700 m on the further course of the relative risk becomes uncertain. Elevation is eventually the single most neglected property in past statistical avalanche assessment.

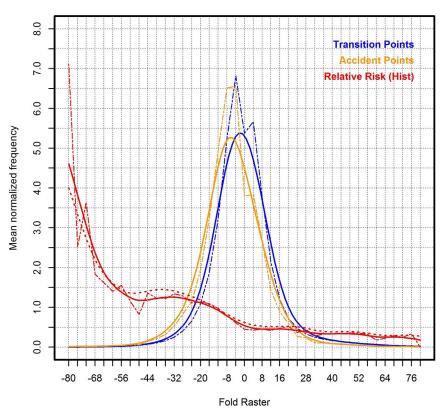
4.9 Plan Curvature (PLANC)

Name	PLANC	Plan Curva	ture				
Description	The planar curv	ature calculat	ed from a DEM with r	resolution	i 10 m.		
Comment		Negative values indicates convexity (n), positive values indicate concavity (u). Caution: In order to find an optimal scaling use GRASS and not ArcGIS to calculate PLANC.					
Values	Decimal		-100100		-9999		
Reference	r.param.scale(s	ize=7, method	d=planc)				
Redundancy	FOLD, TR						
Usage	**	Priority should be given to FOLD.					
Copyrights	© Swisstopo	topo					

DISTRIBUTION: Planar Curvature

Interpretation

The data indicate higher risk for concavity (u) then for convexity (n), which applies to intuition. The success data and failure data follow a rather similar trend. Nevertheless the rise in risk is relatively prominent (from 0.5 to 2.5).


4.10 Terrain Folds (FOLD)

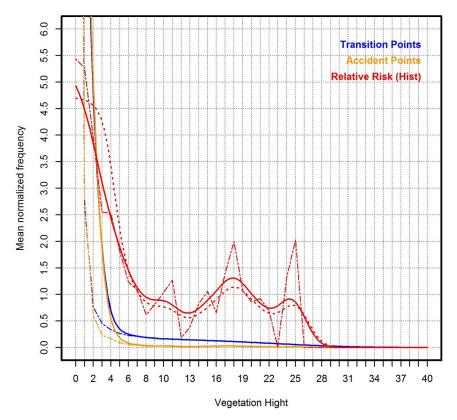
Name	FOLD	Terrain Fol	Terrain Folds				
Description		Slope normal discontinuity raster. The raster shows folds (edges) in the terrain. Calculated from a DEM with 10 m resolution.					
Comment	Negative value	Negative values indicates concavity (u), positive values indicate convexity (n).					
Values	Decimal		-180180°		-9999		
Reference							
Redundancy	PLANC, TR						
Usage	**	If used, give	If used, give priority to this property over PLANC.				
Copyrights	© Skitourengur	Skitourenguru					

The fold raster is calculated in 3 steps:

- 1. In a first step 10 **slope normals** are calculated on a circle with radius 10 m.
- 2. In a second step the angle between 5 pairs of opposite slope normals a calculated.
- 3. The maximal angle of all five angles gives the value of the fold raster.

The fold raster value is related to the MAXIC-Curvature <u>r.param.scale(method=maxic)</u>.

DISTRIBUTION: Fold Raster

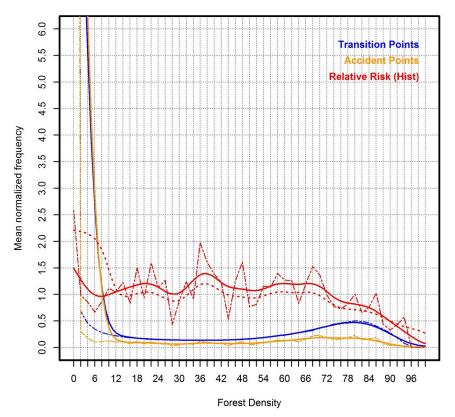

Interpretation

The data indicate higher risk for concavity (u) then for convexity (n), which applies to intuition. The success data and failure data follow a rather similar trend. Nevertheless the decline in risk is relatively prominent (from 3.5 to 0.25).

4.11 Vegetation Height (VH)

Name	VH	Vegetation Height				
Description	Vegetation Heig	/egetation Height Model and a resolution of 1 m.				
Comment	Data is only ava	Data is only available for Switzerland.				
Values	Decimal		050 m	-9999		
Reference	Vegetation Heig	ht Model (NF	<u>I)</u>			
Redundancy	VD					
Usage	-	Don't use the dataset, its only available for Switzerland.				
Copyrights	©BAFU					

DISTRIBUTION: Vegetation Hight

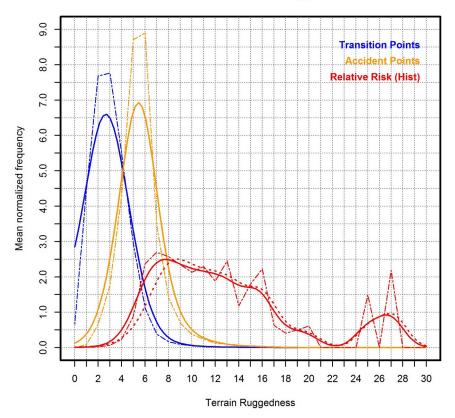

Interpretation

Between 0 and 10 m the protective value of forest constantly rises. From 10 m on there is no clear trend.

4.12 Forest Density (FD)

Name	FD	Forest Den	Forest Density				
Description	Forest Densi	Forest Density (in %) and a resolution of 20 m.					
Comment							
Values	Decimal	Decimal		-9999			
Reference	Tree Cover D	<u>Density (2015)</u>					
Redundancy	VH						
Usage	**	Use with me	Use with medium priority.				
Copyrights	© ESA	I					

DISTRIBUTION: Forest Density

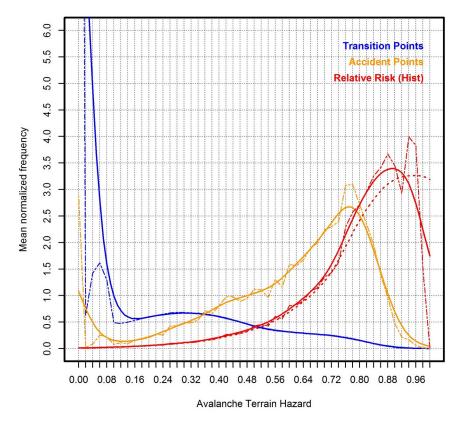

Interpretation

Forest starts to protect above vegetation density 72. There is a decline in risk from 72 to 90 (factor 2).

4.13 Terrain Ruggedness (TR)

Name	TR	Terrain Rug	Terrain Ruggedness			
Description	Terrain Rug	gedness Index.				
Comment		TR is defined as the mean difference between a central pixel and its surrounding cells. TR is highly correlated to SA.				
Values	Decimal	Decimal			-9999	
Reference	gdaldem (TF	<u>RI)</u>				
Redundancy	FOLD, PLAN	NC				
Usage	*	Use with cau	Use with caution.			
Copyrights	© Swisstopo	© Swisstopo				

DISTRIBUTION: Terrain Ruggedness


Interpretation

There is a difference between success data and failure data. We would expect a constant decline of risk with rising TR. However that's only the case above the value 8.

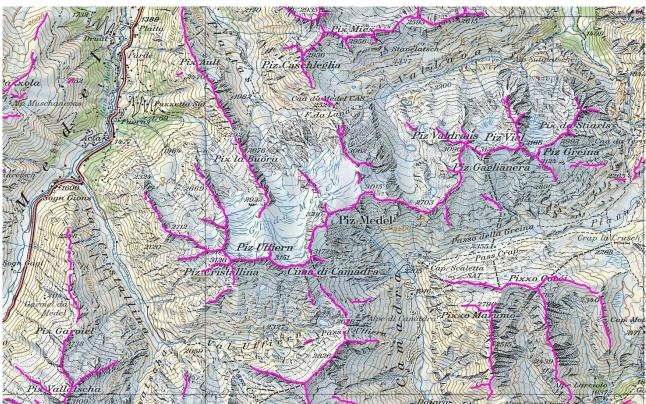
4.14 Avalanche Terrain Hazard (ATH)

Name	ATH	Avalanche Terrain Hazard			
Description	Terrain Classific	ation of the S	SLF.		
Comment	ATH includes co	nsequences	of an avalanche	(PBD, FD_*).	
Values	Decimal	Decimal			-9999
Reference	Avalanche terra	in maps for b	backcountry skiin	g in Switzerla	nd
Redundancy	TI, SA, HP, SP				
Usage	-	Don't use for two reasons: 1. Data is only available for Switzerland. 2. License issue, as ATH is based on swissALTI3D with 5 m resolution. 3. Based on V1 of ATH.			
Copyrights	© SLF				

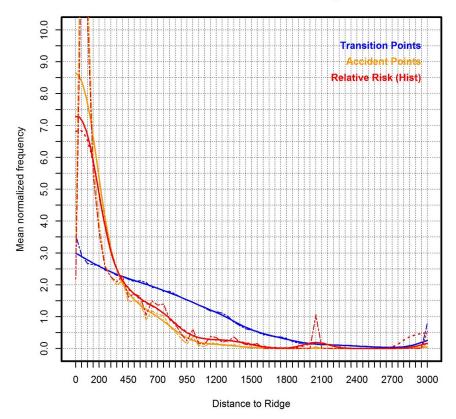
DISTRIBUTION: Avalanche Terrain Hazard

Interpretation

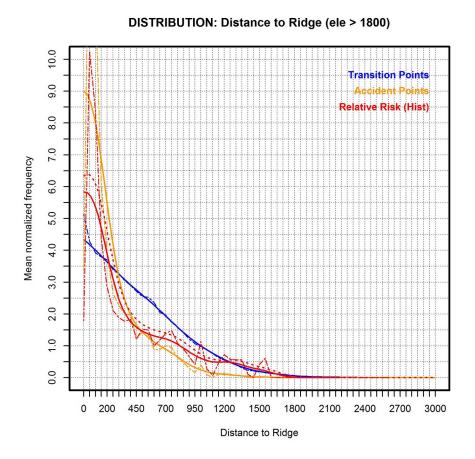
Failure data and success data follow a fundamentally different trend. The relative risk shows a tremendous rise in risk with rising ATH. Above ATH=0.9 the relative risk becomes uncertain.


4.15 Distance to Ridge (DIST_RIDGE)

Name	DIST_RIDGE	Distance to Ridge				
Description	Distance to the	istance to the next ridge, calculated from the DEM with 10 m resolution.				
Comment	All point with a c	All point with a distance larger then 3000 m will have the value 3000 m.				
Values	Decimal	Decimal			3000	
Reference						
Redundancy	ELE					
Usage	***	Important property.				
Copyrights	© Skitourenguru	© Skitourenguru				


Ridges are calculated with GRASS, following an approach that combines four different parameters:

- 1. Water accumulation of the inverted DEM (r.watershed)
- 2. Absolute elevation
- 3. MAXIC-Curvature (r.param.scale(method=maxic))
- 4. <u>Topex (r.horizon)</u>


The normalized parameters are multiplied. The result is then converted with a threshold to a binary raster. In the last step the binary raster is vectorized. The following image gives an example of the result:

DISTRIBUTION: Distance to Ridge

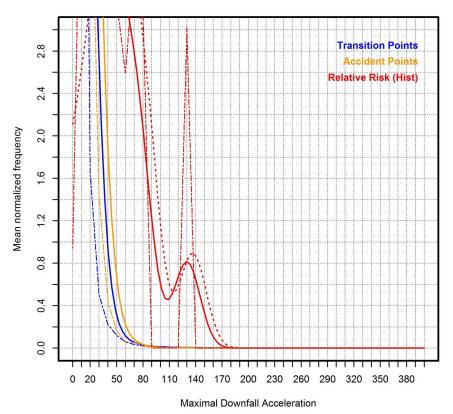
Points with low elevation have always a high distance to ridges. Therefore DIST_RIDGE can be correlated to ELE. The following graphic shows the histogram for points above 1800 m.

Interpretation

Even if we select only points above 1800 m the risk significantly decreases with distance to ridge.

4.16 Treeline (TL)

Name	TL	Treeline				
Description	The theoretical t	The theoretical treeline elevation at the point				
Comment	Outside mountai	Outside mountain areas the value is on 1800 m				
Values	Decimal		18002350 m		NA	
Reference	GIS-analysis of t	ree-line elev	ation in the Swiss Alps	s sugges	ts no exposure effect	
Redundancy						
Usage	*					
Copyrights	©WSL	© WSL				


5 DataTerrain (Avalanche consequences)

5.1 Maximal normal acceleration (FD_MAXNA)

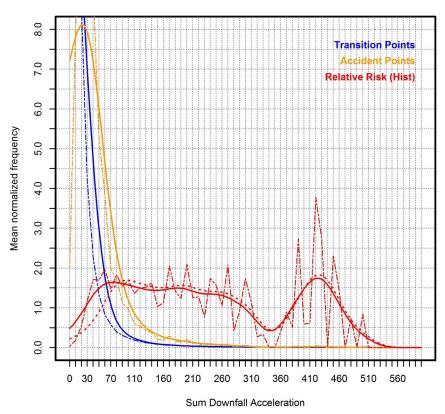
Name	FD_MAXNA	Maximal normal acceleration				
Description	Maximal normal	Maximal normal acceleration on a downfall trajectory.				
Comment						
Values	Decimal		0400 m/s2	-9	9999	
Reference	Avalanche terra	in maps for b	ackcountry skiing in	Switzerland	 [
Redundancy	FD_*					
Usage	-	Don't use, see other properties FD_*.				
Copyrights	© Skitourenguru					

The property is calculated through the following steps:

- A downfall trajectory of maximally 1 km length is calculated.
- An item of 75 kg falls down the downfall trajectory: Normal accelerations are recorded along the downfall trajectory. Normal accelerations cause injuries. Finally the maximal normal acceleration is extracted.

DISTRIBUTION: Maximal Downfall Acceleration

Interpretation


No clear trend.

5.2 Sum of normal accelerations (FD_SUMNA)

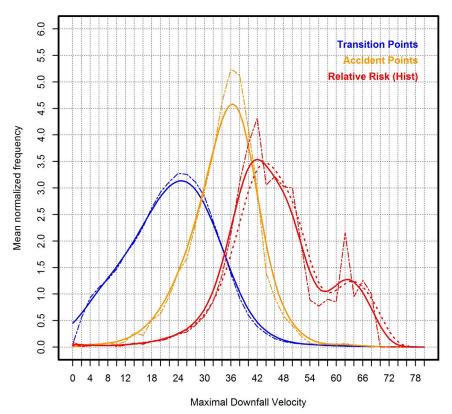
Name	FD_SUMNA	Sum of no	Sum of normal accelerationa				
Description	Sum of normal a	Sum of normal accelerations on a downfall trajectory.					
Comment							
Values	Decimal	Decimal		-9999			
Reference	Avalanche terra	in maps for b	backcountry skiing in	Switzerland			
Redundancy	FD_*						
Usage	*	Use with low priority, see FD_MAXV and FD_SUMV.					
Copyrights	© Skitourenguru	© Skitourenguru					

The property is calculated through the following steps:

- A downfall trajectory of maximally 1 km length is calculated.
- An item of 75 kg falls down the downfall trajectory: Normal accelerations are recorded along the downfall trajectory. Normal accelerations cause injuries. Finally the sum of normal accelerations is calculated.

DISTRIBUTION: Sum Downfall Acceleration

Interpretation


The relative risk continuously rises till a value of 60. Eventually values above 60 m/s2 are fatal to humans.

5.3 Maximal Velocity (FD_MAXV)

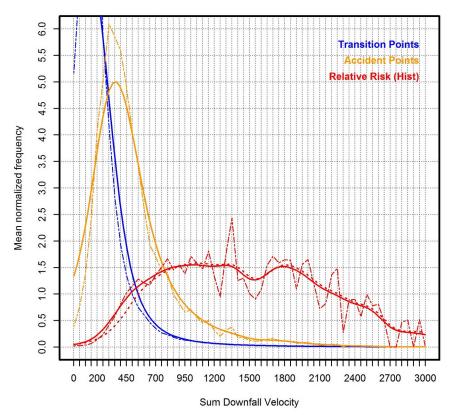
Name	FD_MAXV	Maximal V	Maximal Velocity				
Description	Maximal veloci	Maximal velocity on a downfall trajectory.					
Comment							
Values	Decimal	Decimal		-9999			
Reference	Avalanche terr	rain maps for l	backcountry skiing in	Switzerland			
Redundancy	FD_*						
Usage	***	Important pr	Important property.				
Copyrights	© Skitourengur	© Skitourenguru					

The property is calculated through the following steps:

- A downfall trajectory of maximally 1 km length is calculated.
- An item of 75 kg falls down the downfall trajectory: Velocities are recorded along the downfall trajectory. Maximal velocity is extracted.

DISTRIBUTION: Maximal Downfall Velocity

Interpretation


There is a constant rise of risk till the value of 42 m/s. Later on the data become uncertain.

5.4 Sum of Velocities (FD_SUMV)

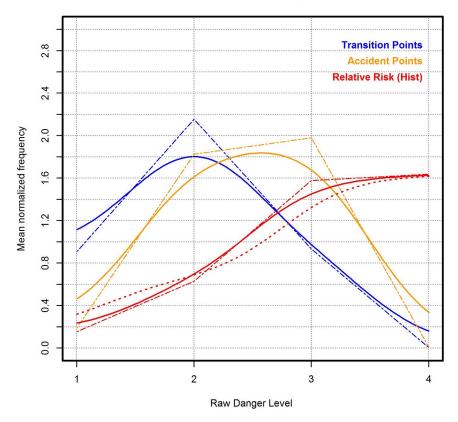
Name	FD_SUMV	Sum of Velo	Sum of Velocities				
Description	Sum of velociti	ies on a downfa	s on a downfall trajectory.				
Comment							
Values	Decimal	1	03000 m/s	-9999			
Reference	Avalanche ter	rain maps for ba	ackcountry skiing in S	Switzerland			
Redundancy	FD_*						
Usage	**	Important pro	Important property.				
Copyrights	© Skitourengu	© Skitourenguru					

The property is calculated through the following steps:

- A downfall trajectory of maximally 1 km length is calculated.
- An item of 75 kg falls down the downfall trajectory: Velocities are recorded along the downfall trajectory. Sum of velocities is calculated.

DISTRIBUTION: Sum Downfall Velocity

Interpretation

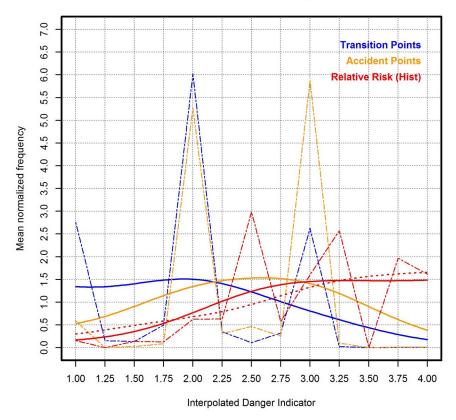

The relative risk continuously rises till a value of 800 and then remains stable.

6 Avalanche Forecast

6.1 Raw Danger Level (RDL)

Name	RDL	Raw Dang	Raw Danger Level			
Description	Raw danger	Raw danger level according the avalanche forecast of the evening before.				
Comment						
Values	Integer	Integer		-9999		
Reference						
Redundancy	IDI, DI					
Usage	-	Use IDI, AO	Use IDI, AOF, DCE resp. DI in stead.			
Copyrights	© SLF					

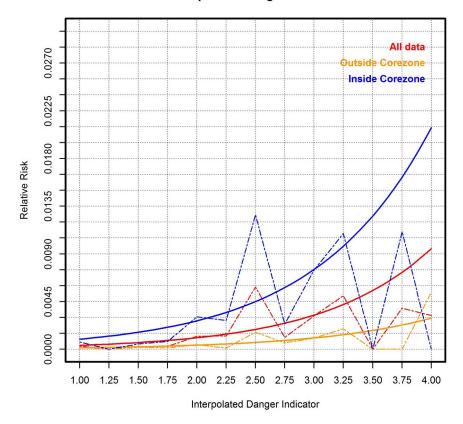
DISTRIBUTION: Raw Danger Level


Interpretation

A stong rise in risk between 1 and 3. The risk at 4 is uncertain.

-	-		. ,		
Name	IDI	Interpolated Danger Indicator			
Description	Horizontally inter	polated dang	ger indicator.		
Comment	Horizontal interpolation is calculated with up to 9 neighboring warning regions. In contrast to DI critical aspects and critical elevations are not taken into account. So the 1-level rule is not applied.				
Values	Decimal		14	-9999	
Reference	Quantitative Risl	Reduction I	Method (QRM), a data-driven a	avalanche risk estimator	
Redundancy	DI, RDL				
Usage	***	Important property, best used in combination with AOF and DCE.			
Copyrights	© Skitourenguru				

6.2 Interpolated Danger Indicator (IDI)


DISTRIBUTION: Interpolated Danger Indicator

Interpretation:

There is a concentration of values at the integer values 1, 2, 3 and 4. Therefore we try to fit a statistical model. For binary discrete response variables typically a <u>Binomial Generalized Linear Model (B-GLM)</u> is fitted:

Interpolated Danger Indicator

Interpretation

If we accept the assumption, the risk rises with the INV-LOGIT function, we can fit a binomial Generalized Model. The risk increases in the case of the red curve (all data) from danger level to danger level with the following factors: 2.96, 2.96, 2.95. On average, this makes a **factor of 2.96**.

The figure shows, that there is an important difference between the groups **inside the core zone** and **outside the core zone**. The horizontal shift between the blue curve (inside the core zone) and the yellow curve (outside the core zone) gives the x-value of the x-level rule. The value x is not constant, it rises slowly from left (1.94) to right (1.94). On average, it is 1.94. We should therefore rather apply a **1.94-level rule**.

Remark

Since V3.0.6 we only use backcountry skier accidents of the SLDB. Consequently we have very little accidents at danger level 4. Data become highly unreliable above danger level 3.

6.3 Critical Aspects (CA)

Name	CA	Critical Asp	Critical Aspects			
Description	Critical aspe	cts according the	avalanche forecast	of the eve	ening before.	
Comment		Describes 8 sectors in clockwise direction, starting from the sector N-NNE. Example: 11100001 corresponds to NW over N to SE.				
Values	String		"XXXXXXXX"		""	
Reference						
Redundancy	AOF, CZ					
Usage	*	Use for subs	Use for subsampling.			
Copyrights	© SLF					

6.4 Critical Elevation (CE)

Name	CE	Critical Elevation			
Description	Critical elevation	n according th	ne avalanche forecast	of the ev	vening before.
Comment	the value is neg	If the value is positive, the dangerous elevations are above the indicated elevation. If the value is negative, the dangerous elevations are below the absolute value of the indicated elevation.			
Values	Decimal	Decimal			-9999
Reference					
Redundancy	DCE, CZ				
Usage	*	Use for subsampling.			
Copyrights	©SLF				

6.5 Warning Region Code (WRC)

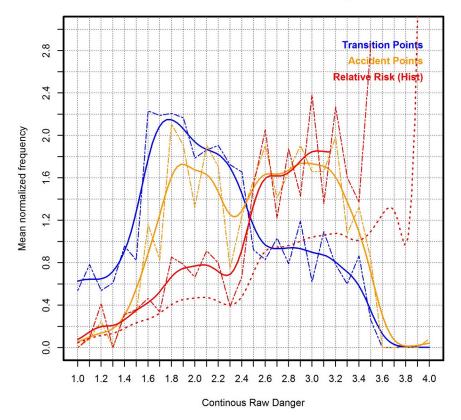
Name	WRC	Warning Region Code				
Description	Warning Region	Warning Region Code according the avalanche forecast of the evening before.				
Comment						
Values	Integer		0.9999		NA	
Reference	Warning Region	s according t	he SLF			
Redundancy						
Usage	*	Use for regional subsampling.				
Copyrights	© SLF					

6.6 Avalanche Problems (AP)

Name	AP	Avalanche Problems		
Description	Avalanche Prob	lems accordir	ng the avalanche forecast of t	the evening before.
Comment	The bitmaps describes the avalanche problems with 6 bit in the following order: NEW_SNOW, WIND_SNOW, WET_SNOW, OLD_SNOW, GLIDE_SNOW, FAVOURABLE_SNOW, NO_DISTICT_PATTERN. Major and minor avalanche problems are not distinguished.			
Values	String		"XXXXXX"	
Reference	Avalanche Prob	ems accordir	ng the SLF	
Redundancy				
Usage	*	Use for subsampling tests.		
Copyrights	© SLF			

The following table compares the risks between the avalanche problems:

	NEW	WIND	WET	OLD	GLIDE
Accident Point Count (APC)	710	2737	924	1635	1176
Transition Point Count (TPC)	462208	2710812	976313	1870815	1433408
1000 * APC / TPC	1.54	1.01	0.95	0.87	0.82


Interpretation:

NEW_SNOW problem is twice as riskier then the other avalanche problems. Else there are no big differences between in risk between the avalanche problems. In particular the OLD_SNOW problem is not much riskier then the WE_SNOWT or WIND_SNOW snow problem.

6.7 Continous Raw Danger (CRD)

Name	CRD	Continous	Raw Danger		
Description		A continuous danger value derived from RDL, CA, CE, AP and the texts (DE, EN, FR and IT) of the avalanche forecast			
Comment	Method based on text analytics and Gradient Boosting, that deduces a "continuous danger value" from the compiled text information (DE, EN, FR and IT) contained in the avalanche bulletin. Only avalanche forecasts from Winter 2013/14 to 2018/19 can be used, as standardized texts are not available in former versions of the avalanche forecast. Consequently 2/3 of the avalanche accidents can't be covered.				
Values	Decimal		05		-9999
Reference	To ski or not to s and Machine Le		e question: Avalar	iche Risk Pre	ediction with Text Analytics
Redundancy	DI, RDL				
Usage	**	Keep in mind the relative low number of available accidents during the time period.			
Copyrights	© Skitourenguru	, © SAS, © S	SLF		

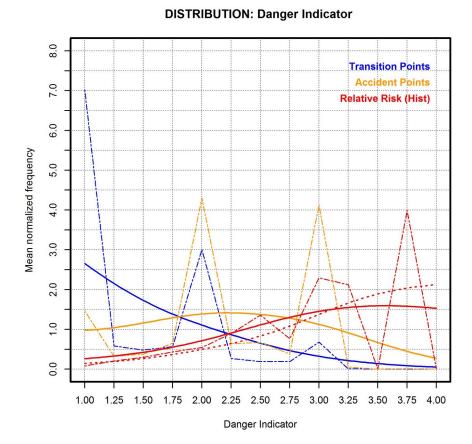
DISTRIBUTION: Continous Raw Danger

Interpretation

Travel usage and accidents have a clear inverse trend. Hence the risk rises significantly from CRD=1 to CRD=3. There are too few data for CRD>3.5. The data concentrations at the integer values can still be seen.

Name	DIST_LO	Distance to	Distance to next lower danger level			
Description	Distance from t	Distance from the point to the next warning region with a lower danger level.				
Comment		If 0, the distance couldn't be calculated. If negative, there wasn't found a lower danger level within the a search radius of abs(value).				
Values	Decimal	Decimal			<=0	
Reference						
Redundancy	IDI, DI					
Usage	*	Use in stead of IDI, DI				
Copyrights	© Skitourenguru					

6.8 Distance to next lower danger level (DIST_LO)

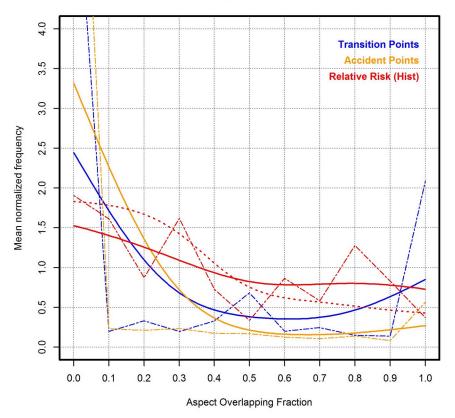

6.9 Distance to next higher danger level (DIST_HI)

Name	DIST_HI	Distance to next higher danger level			
Description	Distance from th	e point to the	e next warning region	n with a hig	gher danger level.
Comment		If 0, the distance couldn't be calculated. If negative, there wasn't found a higher danger level within the a search radius of abs(value).			
Values	Decimal	Decimal			<=0
Reference					
Redundancy	ID, DI				
Usage	*	Use in stead of IDI, DI			
Copyrights	© Skitourenguru				

7 Avalanche Forecast and Terrain

7.1 Danger Indicator (DI)

Name	DI	Danger Indicator		
Description	The Danger Indicator takes into account RDL, Critical Aspects, Critical Elevations of the current warning region and of 9 neighboring warning regions. The avalanche forecast of the evening before is used.			
Comment	The 1-level rule is applied for the data of all involved warning regions.			
Values	Decimal		14	-9999
Reference	Quantitative Risl	Reduction I	Method (QRM), a data-driven a	avalanche risk estimator
Redundancy	RDL, IDI			
Usage	***	Important property, eventually use IDI, AOF and DCE in stead.		
Copyrights	© Skitourenguru			


Interpretation

A rather linear rise in risk.

7.2 Aspect Overlapping Fraction (AOF)

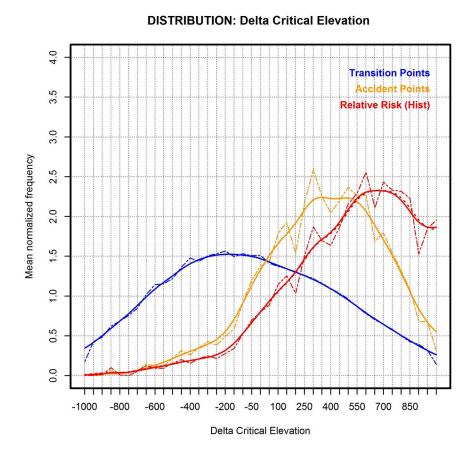
Name	AOF	Aspect Overlapping Factor			
Description	by the avalanch Slope aspects a Only aspects wi	The fraction of slope aspects, that don't overlap with the critical aspects as indicated by the avalanche forecast of the evening before. Slope aspects are defined by the slope aspect range [MIN_ASPECTMAX_ASPECT]. Only aspects with slope angle >25° are taken into account. If the slope aspect interval is undefined, the share of CA relative to 360° defines AOF.			
Comment	0 means the point (resp. the slope the point belongs to) is completely inside the critical aspects. 1 means the point (resp. the slope the point belongs to) is completely outside the critical aspects. If RDL=1 then CA=[-90°135°] and CE=2000 is applied.				
Values	Decimal		01		-9999
Reference	Quantitative Ris	k Reduction	Method (QRM)	, a data-driven a	avalanche risk estimator
Redundancy	IDI, DI, RDL, CZ				
Usage	***	Important property.			
Copyrights	© Skitourenguru				

DISTRIBUTION: Aspect Overlapping Fraction

The next table shows the relative risk between three groups. All risks are expressed relative to a group that avoids totally the **critical aspects** (aof=1).

Dataset	aof = 0	(aof>0)&(aof<1)	aof ==1
All data	5.15	2.27	1.00
All data except rdl==1	4.32	2.23	1.00

The next table shows the relative risk between two groups. The risks are expressed relative to a group that avoids the **critical aspects** (aof>0.5).


Dataset	aof < 0.5	aof > 0.5
All data	3.51	1.00
All data except rdl==1	3.09	1.00

Interpretation

The risk outside of the **critical aspects** is approximately 2-4 times lower then within the **critical aspects**.

7.3 Delta Critical Elevation (DCE)

Name	DCE	Delta Critical Elevation			
Description	 Distinguish between two cases: CE is positive: DCE = ELE - CE CE is negative: DCE = abs(CE) - ELE Consequently a positive DCE always means the point is located inside the avalanche prone elevations. A negative DCE always means the point is located outside the avalanche prone elevations. If RDL=1 the critical elevation CE=2000 is always applied. 				
Comment	Positive values mean the point is within the core zone. Negative values means the point is without the core zone.				
Values	Decimal		-10001000 m	-9999	
Reference	Quantitative Risl	k Reduction I	Method (QRM), a data-driven a	avalanche risk estimator	
Redundancy	IDI, DI, RDL, CZ				
Usage	*** Important property.				
Copyrights	© Skitourenguru				

The next table shows the relative risk between two groups. The risks are expressed relative to a group that avoids the **critical elevations** (dce<0).

Dataset	dce>0	dce<0
All data	6.93	1.00
All data except rdl==1	7.80	1.00

Interpretation

There is a very significant rise in risk in function of DCE. Data below -600 and above +600 m are uncertain. Interestingly the factor **critical elevation** seems to be more significant then the factor **critical aspects**.

7.4 Core Zone (CZ)

Name	CZ	Core Zone			
Description	Is the point with	Is the point within the core zone (1) or outside the core zone (0)			
Comment	If RDL=1 the cri	CZ = ((AOF < 0.5) && (DCE > 0))? 1:0 If RDL=1 the critical aspects CA=[-90°90] are always applied. If RDL=1 the critical elevation CE=2000 is always applied.			
Values	Integer		0, 1	NA	
Reference	Quantitative Ris	k Reduction I	Method (QRM), a data-drive	n avalanche risk estimator	
Redundancy	IDI, DI, RDL, CZ	7			
Usage	***	Use for subsampling.			
Copyrights	© Skitourenguru	© Skitourenguru			

The property allows to calculate the effect of the core zone on the risk of two winter sportsmen: Sportsman A is always en route outside of the core zone, sportsman B is always en route inside the core zone. By simple row counting we can conclude **sportsman B has 7.43 time higher risk then sportsman A**. If we omit all data with rdl=1, **sportsman B has a 7.44 time higher risk then sportsman A**

Now we can further refine the result and check the effect of AOF and DCE. The following table will calculate relative risk indicators. A sportsman who is outside of the core zone in a double sense (relative to the **critical aspects** and the **critical elevations**) has the relative risk 1.

	Inside (AOF< 0.5)	Outside (AOF> 0.5)
Inside (DCE> 0)	32.88	8.93
Outside (DCE < 0)	4.64	1.00

Interpretation

The effect of the core zone is quite important, where the effect of **elevation** is more or less twice as important then the effect of **aspect**.

8 Spatio-temporal information

8.1 Date (DATE)

Name	DATE	Date	Date			
Description		The date the accident occurred (failure data) resp. the date the point was passed by a backcountry skier (success data).				
Comment	The informat 17 h)	The information of the avalanche bulletin comes from the day before (evening forecast 17 h)				
Values	String		"yyyy.MM,dd"	NA		
Reference			·	· ·		
Redundancy	HASH					
Usage	*	Use for ter	Use for temporal subsampling.			
Copyrights	© Skitourenguru					

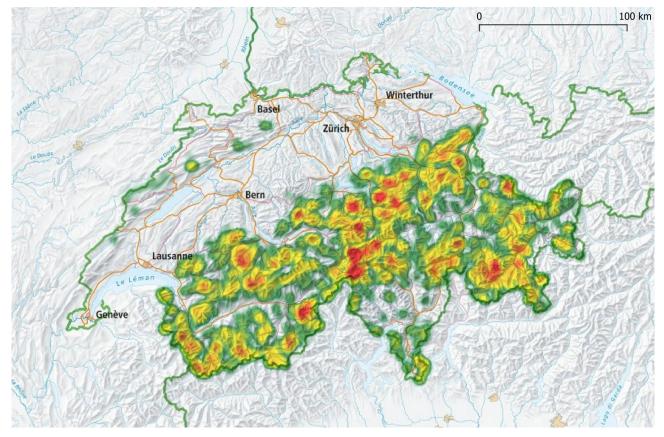
8.2 X- Coordinate (X)

Name	X	X-Coordina	X-Coordinate			
Description	The X-Coordinadata).	The X-Coordinate of the accident point (failure data) resp. the transition point (success data).				
Comment	The coordinate	The coordinate is expressed in <u>EPSG=21781.</u>				
Values	Decimal		400'000900'000	NA		
Reference						
Redundancy	HASH					
Usage	*	Use for regional subsampling.				
Copyrights	© Skitourengur	© Skitourenguru				

8.3 Y- Coordinate (Y)

Name	Y	Y-Coordinate			
Description	The Y-Coordinat data).	The Y-Coordinate of the accident point (failure data) resp. the transition point (success data).			
Comment	The coordinate i	The coordinate is expressed in EPSG=21781.			
Values	Decimal	Decimal			NA
Reference					
Redundancy	HASH				
Usage	*	Use for regional subsampling.			
Copyrights	©Skitourenguru				

8.4 Hash (HASH)

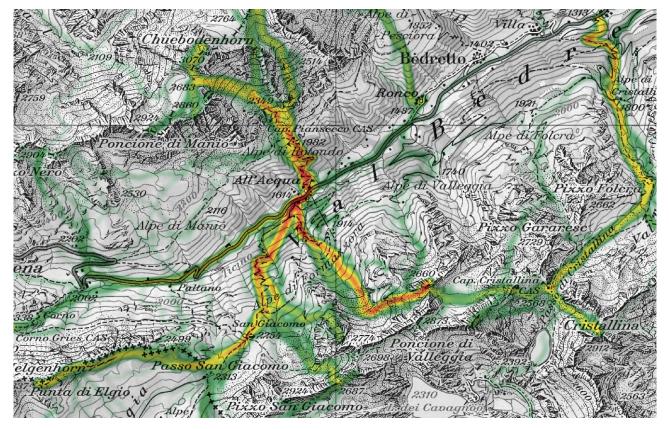

Name	HASH	Hash			
Description	A SHA256 hash	A SHA256 hash over DATE, X and Y.			
Comment	Identifies unique	dentifies uniquely a point in space and time.			
Values	String		SHA256 hash	NA	
Reference					
Redundancy	DATE, X, Y				
Usage	-	-			
Copyrights	©Skitourenguru				

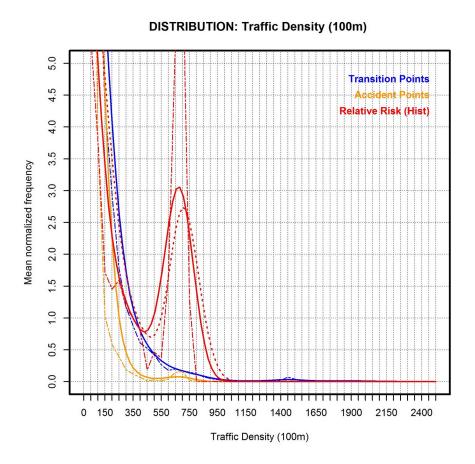
9 Human-related Information

9.1 Traffic Density (TD5000)

Name	TD5000	Traffic Density			
Description	Describes the ov	Describes the overall backcountry skier traffic density at the point (heatmap).			
Comment		The heatmap was calculated from the GPS tracks collection. The kernel bandwidth is 5000 m, which leads to a generalized overall travel density.			
Values	Decimal		0125'000	-9999	
Reference	Heatmap of Skite	ourenguru			
Redundancy	DIST_SAC, DIS	T_PISTE, TC	0100		
Usage	*	Use with low priority, as data is only available for Switzerland. Use for subsampling.			
Copyrights	© Skitourenguru				

The following figure shows the current valid heatmap (V3.0) based on GPS tracks collected till June 2019:

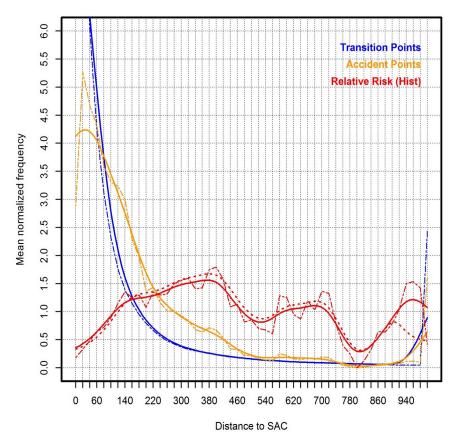

Interpretation


The relative risk constantly decreases with increasing overall traffic. Data below 1500 are uncertain. Be careful with interpretation: TD5000 is calculated from the same data set as already used for the success points.

9.2 Traffic Density (TD100)

Name	TD100	Traffic Density			
Description	Describes the lo	Describes the local backcountry skier traffic density at the point (heatmap).			
Comment		The heatmap was calculated from the GPS tracks collection. The kernel bandwidth is 100 m, which leads to a local travel density (corridor).			
Values	Decimal		0125'000	-9999	
Reference	Heatmap of Skit	<u>ourenguru</u>	·		
Redundancy	DIST_SAC, DIS	T_PISTE, TC	05000		
Usage	*	Use with low priority, as data is only available for Switzerland. Use for subsampling.			
Copyrights	© Skitourenguru	© Skitourenguru			

The following figure shows the current valid heatmap (V3.0) based on GPS tracks collected till June 2019:

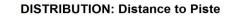

Interpretation

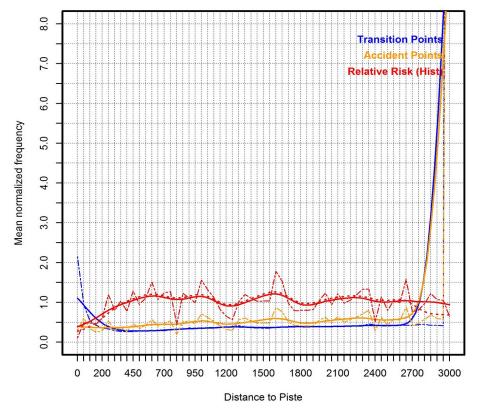
Be careful with interpretation: TD100 is calculated from the same data set as already used for the success points.

Name	DIST_SAC	Distance to next SAC skitour				
Description	The distance to the network.	The distance to the next skitour of the Swiss Alpine Club (SAC) backcountry skiing network.				
Comment	All point with a d	All point with a distance larger then 1000 m will have the value 1000 m.				
Values	Decimal	Decimal			1000 m	
Reference	Backcountry Ski	ing Maps of S	Switzerland (Swisst	opo/SAC)		
Redundancy	TD, DIST_PISTE	Ξ				
Usage	*	Use with low priority, as data is only available for Switzerland. Use for subsampling.				
Copyrights	© Swisstopo, SA	© Swisstopo, SAC				

9.3 Distance to next SAC skitour (DIST_SAC)

DISTRIBUTION: Distance to SAC




Interpretation

There is a constant rise in risk with rising distance to the next SAC skitour. Above 500 m the result is unreliable.

			-			
Name	DIST_PISTE	Distance to	Distance to next SAC skitour			
Description	The distance to	e distance to the next downhill piste				
Comment	All point with a c	All point with a distance larger then 3000 m will have the value 3000 m				
Values	Decimal 03000 m 3000 m			3000 m		
Reference	OSM tag Piste	OSM tag Piste				
Redundancy	TD, DIST_SAC	TD, DIST_SAC				
Usage	-	Use only for subsampling: With this property its possible to filter out accidents that occurred in a freeriding context.				
Copyrights	©OSM					

9.4 Distance to next piste (DIST_PISTE)

Interpretation

There is no clear trend.

9.5 Identifier of Route (ID)

Name	ID	Identifier of Route			
Description	The identifier of the route.				
Comment	In case of accidents its the ID of the accident. In case of GPS tracks its an ID of the route.				
Values	String				
Reference					
Redundancy					
Usage	-	Use for subsampling or statistical tests			
Copyrights	© Skitourenguru				

9.6 Elevation Gain (EG)

Name	EG	Elevation Gain of the Route				
Description	The elevation gain of the route the point is member of.					
Comment	In case of accidents the elevation gain will be always around 40 m and has no particular meaning. In case of the GPS tracks its the elevation gain of the route the point is member of.					
Values	Decimal		010'000 m	NA		
Reference						
Redundancy						
Usage	-	Use for subsampling				
Copyrights	© Skitourenguru					

10 Recommendations

10.1 Multivariate Regression Analysis

Use the following properties as explanatory variables:

- 1. Terrain (Avalanche probability): TI (alternatively MSA*, HP or SP), ELE, FOLD, FD, DIST_RIDGE
- 2. Terrain (Avalanche consequences): FD_MAXV, FD_SUMV
- 3. Avalanche Forecast: DI (or alternatively IDI, AOF and DCE)
- 4. Human related Information: -

10.2 R-Statistics

Be careful when loading the GPS dataset. R-Statistics has problems to load all rows with all columns. Load the columns selectively with read.csv (colClasses=..). Selective loading has the advantage to be fast.